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A Monte Carlo simulation of the concentration dependence of the fluorescence quantum yield "qM 
and emission anisotropy rM of a system containing dye molecules in the form of monomers M and 
clusters T (statistical pairs and trimers) playing the role of the imperfect traps for nonradiative 
excitation energy transfer (NET) has been carried out. The simulation has been made for determined 
values of F6rster critical distances Ro MM and R~ T and for several values of R~ TM and R~ r, assuming 
that the energy may be transferred from M* to T as well as from T* to M (reverse nonradiative 
energy transfer, RNET). It was shown that the RNET process in the range of high concentrations 
may strongly change the values of rM as well as those of ~qM. For emission anisotropy rM an effect 
of repolarization was observed which decreases rapidly with increasing Ro T M  and R~'. A very good 
agreement between the simulation results of ~qM and the theoretical model with no adjustable 
parameters was found. In the model, the RNET process and influence of correlation between active 
molecules on energy migration among monomers were taken into account. 
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INTRODUCTION 

The process of fluorescence concentration quench- 
ing (FCQ) in solution is often related to nonradiative 
electronic excitation energy transport (NET) from mono- 
mers M (donors) to ground-state dimers or statistical 
pairs of luminescent molecules treated as perfect traps T 
(acceptors) for the excitation energy [1-4]. Recently [5] 
the FCQ process in solution was investigated under the 
assumption of energy transport in one direction from 
excited monomers to statistical pairs--perfect traps with 
the quantum yield ~10T = 0. It was shown [6] that the 
absorption spectrum of monomers M significantly over- 
laps the fluorescence (FL) spectrum of traps T and that 
a measurable FL quantum yield ~q0T is observed even in 
the solutions of low viscosity (imperfect traps). This fact 
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allows reverse nonradiative energy transfer (RNET) from 
excited traps T* to monomers M. Recent studies [7] of 
the rise in FL decay time with the increase in solution 
viscosity may suggest that the quantum yield of the traps 
should also increase. Hence, the transport of excitation 
energy in a system of molecules M and T is possible in 
both directions, M * ~ T  and T * ~  M [8]. Suitable con- 
ditions for the RNET process are found, for example, in 
photosystems of green plants, where the excited trap can 
depopulate via excitation detrapping to chlorophyll [9]. 
It has been shown there that the detrapping process is 
important and should not be neglected. A similar RNET 
process can be significant in the case of other donor and 
acceptor molecular systems, with closely located first 
excited singlet levels. Examples are chlorophyll forms 
[10], fractions of luminescent molecules in inhomoge- 
neously broadened systems [11], and monomer- and 
ground-state dimer systems with "qov > 0 (luminescent 
dimers [12,13]). Large overlapping of monomer and di- 
mer spectra is inherently connected with exciton splitting 
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of the first excited M* energy level [14]. Taking this 
into account, one may expect reverse energy transfer to 
take place in systems of high donor concentrations [8]. 
As recently shown, the RNET process may significantly 
affect the monomer fluorescence quantum yield "qM when 
the overlap integral JTM and trap fluorescence yield riOT 
are large enough [15,16]. A similar influence on emis- 
sion anisotropy, fluorescence decay, and FL average de- 
cay time can be expected [17,18]. 

Large overlapping of absorption and fluorescence 
bands of donor and acceptor leading to reabsorption and 
secondary fluorescence makes experimental verification 
of the RNET effect upon luminescence characteristics of 
molecular systems difficult. These secondary effects can 
be eliminated by using sufficiently thin layers of the 
luminophore [19] or by taking into account, on the basis 
of a suitable theory, the influence of these effects on the 
luminescent properties of solutions [20,21]. Determining 
the concentration of traps in a system with a weak con- 
centration dependence of absorption spectra may be an 
additional difficulty in experimental investigations. 
Therefore investigation of the RNET process has been 
undertaken by means of a Monte Carlo simulation. 

In this paper we present a method of simulation of 
the steady-state quantum yield and emission anisotropy 
of a system containing monomers and imperfect traps. 
The numerical results and their comparison with the heu- 
ristic hopping model are presented. We also compare 
our model with that of Knoester and Van Himbergen [5] 
in the case of perfect traps and discuss the model with 
imperfect traps. 

METHOD OF SIMULATION 

In simulation, N luminescent molecules (LM) of 
dimensionless reduced density "~ ('~ = C/Cg M, where C 
is the analytical concentration and C~ M is the monomer 
critical concentration) were randomly distributed in a 
three-dimensional cube. The excitation energy can be 
transferred to any other LM and the transfer rates are 
taken to be independent of orientation and only depen- 
dent on distance. Any two molecules within distance R-r 
of one another are assumed to form an imperfect trap 
(statistical pair with rl0T > 0). Moreover, for high den- 
sities, higher-order clusters appear, but only statistical 
trimers are taken into account (the configurations at which 
other clusters appear are rejected). The monomer mol- 
ecules are labeled 1 through Arm, molecules in statistical 
pairs Arm + 1 through Arm + 2Np and in statistical trimers 
Nm + 2Np + 1 through N, where the numbers of pairs 
and trimers are Np and Nt, respectively. The probability 

that an excitation is on the jth molecule in fixed config- 
uration at time t, pj(t), satisfies the master equation [22] 

dP 
d t  = - W  o P (1) 

where P is a vector with components [pl(t), p2(t), ..-, 
pNc(t)] and W is an Arc x N~ matrix (Arc = Nm + Np 
+ Nt) given by 

-w M + M+ T ,  
l=Nm+ 1 

j~Nm, k<-gm 

Wjk MT -~- - - W ) k  , Nm+l<-j<-Nc, k<-N m 

[/Vj k m_ - wj.~Ivl j-<Nm, Nm +l-<k<-Nc 

w p +  E wE,  
1 l=Nm+ 1 

Nm + I<-jsNc, Nm+ l~k<-Nc 

The distance-dependent transfer rates between two 
monomer molecules and a monomer and a trap molecule 
(the statistical pair and the trimer) are given by w]~ M, 
wj~ T (w~X e {M,T} are assumed to be zero). The back- 
transfer rate between a trap and a monomer molecule is 
defined as w~ M and the transfer rate between two traps 
is w~. The transfer rates ~ X e {M,T}, are assumed 
to be symmetric and defined as the orientation averaged 
F6rster rate, applicable to a dipole--dipole interaction [23], 

I(Ro--'/~ 
"ToM \ ljk ] wjTY = "roT\ r]k ] x, Ye{MT} 

(2) 
R MM, Ro MT, R~ M and R U  are the respective F6rster dis- 
tances for monomer-monomer, monomer-trap, trap- 
monomer, and trap-trap excitation transfers; 'r0M and "rOT 
are the intrinsic monomer and trap excitation lifetimes. 
The quantities of interest here are the relative emission 
rM/rOM anisotropy and the relative quantum yield riM/ 
rl0M, given by [5] 

rM/rOM 
Nm Nm 

= ( /~ .  [(I "4-ToMW)- l ] i i / i~  J [ ( '  - ] -ToMW)-I ] i j )  (3) 

Nm 
aqM/'q0M = ( ~  [('  + "roMW)-l]ij)/Nm (4) 

where the symbol ( --- ) denotes the average over all 
possible configurations of donors and traps, and I is an 
identity matrix. The inverse matrix of I + "r0MW cannot 
be calculated analytically but can be exploited very well 
in the Monte Carlo simulation. 
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The dependence of quantities of interest on density 
r a given monomer configuration is obtained by re- 
scaling critical radii for energy transfer, keeping the length 
of the box edge equal to 1. The pseudo-random number 
generator, which passed several statistical tests, was also 
verified by checking the simulated trap density against 
the analytically expected value. Traps are detected by 
calculating all intermolecular distances and comparing 
them to the statistical pair radius. The effects of the finite 
size of the generated configurations are reduced by in- 
troducing periodic boundary conditions (the box is sur- 
rounded by replicas of itself) with a minimum image 
convention (the donor or the trap interacts with another 
molecule, the latter being an original molecule or a pe- 
riodic image). Next the number Nm of monomers is ob- 
tained and the Arc x Arc matrix I + %MW is filled. This 
matrix is not symmetrical and is defined as positive. Its 
inverse matrix is calculated using standard numerical 
procedures. Then, after a suitable number of simulated 
runs, averaged quantities of interest are calculated. The 
number of molecules N for individual simulation runs is 
limited by CPU time consumption and numerical stabil- 
ity. After performing several convergence tests, N -- 
300 was chosen as a sufficient number of molecules. 
Numerical results for the relative quantum yield and 
emission anisotropy were generated for densities varying 
from ~ = 0.03 to ~ = 100. The number of necessary 
simulated configurations depends on the density. There- 
fore, at low densities (-) < i), 2000 runs of 300 mole- 
cules were sampled, while for intermediate densities (1 
< ~ < 50), 3000 runs of 300 molecules were made. At 
very high densities (~ > 50), because of the strong de- 
pendence of emission anisotropy on the number of mol- 
ecules, 2000 runs of 500 molecules were performed. The 
nonsymmetrical matrices I + 'roMW were inverted by 
the Gauss procedure, which was tested to show whether 
a system with no traps gives a quantum yield equal unity. 
For N up to 600, the observed deviations were very small 
for all densities (maximal error, less than 0.01%). 

NUMERICAL RESULTS 

Quantum Yield 

The numerical results for relative quantum yield, 
for the system containing monomers and statistical traps 
whose imperfection is characterized by parameter R TM, 

are shown in Fig. 1. The numerical resuIts were obtained 
for the values of parameters listed in Table I. The values 
of R~ 4T, R0 TM, and R~ ~r were obtained from the fluores- 
cence and absorption spectra of monomers and traps taken 
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Fig. 1. Quantum yield "qM/'qoM versus reduced monomer concentration 
"YM = (~/2)(CM/C~M); O, e, A, A, and u are results of Monte Carlo 
simulations for parameters listed in Table I and different values of 
Ro TM and R~. Curves 1-5, corresponding to the increasing values of 
R ~  and R~,  were computed from Eq. (5) with denotations (6)-(9), 
(12), and (13) for the same parameters. The model is without corre- 
lations. 

from Ref. 6. Critical radius Ro MM was taken from Ref. 
24 and the distance between dye molecules in a pair R T 
was accepted as in Ref. 3. All critical radii were deter- 
mined for rhodamine 6G in methanol with an orientation 
factor K 2 = 2/3 [25]. The values of Ro MM and R Mr are 
close to those obtained for rhodamine 6G in viscous and 
solid solutions [26,27] (difference does not exceed 10%). 
Thus, the values of parameters assumed in the Monte 
Carlo simulation are attainable for realistic physical sys- 
tems. Let us note that very small values of R TM and 
Ro TT are brought out by a small value of "qor in methanol 
(see Table I). In solutions of elevated viscosity an in- 
crease in "q0T as well as in R TM and R ~  should be ex- 
pected. The simulation results for the values of parameters 
presented in Table I are shown as filled circles in Fig. 
1 (R TM = 8.8 /~). The values of ~IM/~q0M differ from 
corresponding values for the system with perfect traps 
(R TM = 0 ,~) only for the highest concentrations. All 
other simulation results for relative quantum yield are 
obtained for parameters listed in Table I as previously 
but for several values of Ro TM and RJ "r. The results con- 
sider@ly exceed the values of "QM/TIoM obtained for R TM 

= 0 A and show that in the range of high concentrations 
("/M > 10), the influence of the RNET process on the 
quantum yield may be significant. The results obtained 
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Table I.  The Values of Energy Transfer Parameters for the System Investigated. 

co ~M c ~  c7o ~ 
Ro MM Ro Mr (X 10 -a mol/dm 3) "l]OM a Ro T'r R TM ( X 10 -3 m01/dm 3) "q0T RT 

(~,) (~) (,~) (~,) (.~) 

55.4 51.8 2.33 2.87 0.85 9.87 8.8 4.13 5.82 0.0085 9.41 
f 

"Taken from Ref. 28. 

have been compared with theoretical expression, taking 
into account the forward and reverse energy transfer be- 
tween monomers and traps as well as energy migration 
in the form [8,17,18] 

1 - f(3') i 
 M/ oM = (s) 

1 - 1 - B 

B - (1 - a)f(3")(1 - R)f(N) (6) 
1 - otf(3") 1 - -~f(5) 

'1T1/23' exp(3'2)[X - erf(3')] (7) 

YM + 3̀ T 
('r?/212)(CM/Co MM + CT/CgT); (8) 

3"M/Y 

('Trl/2/2)( CM/C TM -t- CT/CoTT); 

f ( 3 ` )  = 

3"=  

~ =  

where CM 
molecules. 

(9) 

and CT are the concentrations of M and T 
CoXr = (3/4.rr)/(RoXV )3, x ,Y  ~ {M,T}, denotes 

the critical concentration for the NET process from X* 
to Y and can be obtained from the relation [23] 

Co n" = 4.23.  10-l~ (mol/dm3) (10) 

where 

is the overlap of the X molecule fluorescence spectral 
distribution f , (v)  expressed as the number of quanta and 
normalized to unity, e:,(v) is the Y molecule extinction 
coefficient, n is the refractive index of the medium, v is 
the wave number, and K 2 is the orientation factor. 
As can be seen from Eqs. (8) and (9), N and ~ can be 
expressed by 3  ̀and cc 

= -/[1 - oL(1 - b)lC~T/C~r o 

K = (1 - o0/[1 - e~(1 - b)] (12) 

where 

(13) MM M MT b=CgoCo Co ) 

Thus, taking critical concentrations Co xr as given con- 
stants, the relative quantum yield "qM/~10M proves to be 
a function of the reduced concentration 3' and the ratio 
ot (or 3'M and 3'T). When quantum yield "q0T = 0 or 
overlap integral JTM ---- 0, a reverse transfer of energy 
does not occur. In such a case, B -- 0 [Eqs. (10) and 
(6) to (9)] and Eq. (5) becomes [29,30] 

qqM/'qOM -- 1 -- f(3') (14) 
1 - off(3") 

In Fig. 1 the numerical values "qM/~OOM are compared 
with the theoretical curves calculated from Eq. (5). Curves 
2-5 correspond to the case when the RNET process is 
taken into consideration, and curve 1 to the case when 
it is neglected. Only the values of "qM for R T -- 8.8/~ 
lie relatively close to curve 1. For larger Rr,  numerical 
points are significantly shifted away from curve 1. These 
points also differ distinctly from corresponding theoret- 
ical curves. This suggests that the effectiveness of ex- 
citation energy trapping calculated from Eq. (5) is too 
high. This is likely to occur since Eq. (5) was obtained 
assuming that no statistical correlation exists between 
configurations surrounding the excited monomer mole- 
cule before and after the hopping act. However, the par- 
tial consideration of these correlations in the process of 
monomer-monomer energy transfer by means of the 
method introduced by Huber et al. [31,32] and applied 
in the NET theory in Refs. 33 and 34 leads to the re- 
placement of concentration 3̀ M in Eq. (5) by a smaller 
concentration yM/%/2 (hopping model with correlations). 
In Fig. 2, numerical results from Fig. 1 are compared 
with Eq. (5) after replacing 3  ̀and a from Eq. (8) and 
and ~ from Eq. (9) by 

y '  = YMIX/2 + YT; Og = YM/( 'X/2y')  (8') 

respectively. Now curves Y-5' ,  corresponding to the 
same values of parameters as curves 3-5 in Fig. 1, are 
in a very good agreement with numerical results for all 
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Fig. 2. Numerical results as in Fig. 1. Curves 1 ' -5 '  were computed 
from Eq. (5) with denotations (8) and (9) substituted by (8') and (9'). 
The model is with correlations. 
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Fig. 3, Emission anisotropy versus monomer concentration 'YM; O, I ,  
A, and �9 are results of Monte Carlo simulations for parameters from 
Table I and different values of oK~ and Ro rr.  Curves 1-4 were calcu- 
lated for the same values of parameters from Eq. (17). 

concentrations, whereas curves 1 and 2 show a reduced 
coincidence with them. This is especially evident for the 
system with no back-transfer (R~ M = 0 A). 

Emission Anisotropy 

We have also carried out Monte Carlo simulation 
of the concentration dependence of emission anisotropy 
r M for the system discussed in the previous paragraph. 
Numerical results for rM obtained for values of param- 
eters from Table I and for different values of Ro TM and 
Rrro are presented in Fig. 3. For perfect traps (Ro TM = 
0A) as well as for "almost"-perfect traps (R~ TM = 8.8 
A), the emission anisotropy rises in the region of highest 
concentrations, which is due to strong concentration 
quenching (cf. results of "GM/'GOM simulation in Fig. 1). 
One can notice that the effect of reverse energy transfer 
for R~ TM > 15 ~ is significant in this concentration region 
and the repolarization effect practically disappears. For 
increasing Ro TM values, a significant portion of excita- 
tions reaching the traps returns to the set of monomer 
molecules and is subsequently emitted as nonpolarized 
fluorescence. Similarly as in the case of quantum yield, 
it would be interesting to compare numerical results for 
the emission anisotropy with a suitable theoretical 
expression. Unfortunately, such an expression is not 
known and its accurate derivation seems difficult. In the 
case of random and uniform spatial distribution of the 

molecular dipole directions in space, it has commonly 
been assumed in theories of concentration depolarization 
of fluorescence (CDF) that only molecules M~, excited 
primarily by light absorption, contribute to the observed 
emission anisotropy [35,36]. In this case [29,37] 

rM/rOM = ~h/~M (15) 

where "qs is the fluorescence quantum yield of molecules 
Mi, and "qM is the total fluorescence yield. 

The fact that excitation energy, originally localized 
on the M, molecule, may migrate as a localized exciton 
between Ms molecules from the surroundings of the Mi 
molecule and may repeatedly return to it should be taken 
into account when calculating r h. Thus, to the quantum 
yield, "qs contribute not only M~ molecules excited by 
absorption of light (m = 0) but also Mi molecules ex- 
cited after m steps of nonradiative transfers (m = 2,3,...). 

Taking into account the returns of excitation to M~, 
we have obtained [33] 

"qi/~qOM = 1 --f(~/') (16) 

where ~,' is defined in (8') and f(~/) in (7). 
This expression takes into account the correlations 

mentioned above as well as the energy transfer to traps 
but without the possibility of its returning to monomers. 
However, an approximate result for emission anisotropy 
may be obtained under the simplifying assumption that 
the excitation energy transferred from traps to monomer 
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molecules affects only the total fluorescence yield riM 
and does not influence the fluorescence quantum yield 
"q, of monomers M~ initially excited by light absorption. 
For the total fluorescence yield 'q/we accept Eq. (5) with 
denotations (6)-(9), where expressions (8) and (9) are 
replaced by (8') and (9'), namely, 

1 - / ( , / )  1 
rira/rioM = 1 -- a ' f (y ' )1  - -B '  (5') 

where 

B' = (1 - a ' ) f(7 ' )(1 - R')f(~') (6') 
1 - a ' f ( y ' )  1 - -G'f(-~') 

Taking into account expressions (15), (16), and (5'), we 
obtain 

rM/rOM = "q//'q M = [1 -- cdf(y')](1 - B ' )  (17) 

Curves 1-4 calculated according to Eq. (17) for values 
of parameters from Table I are shown in Fig. 3. Curve 
1 corresponds to the system in which reverse energy 
transfer does not occur [Ro T M  = 0/~ and B' = 0 in Eq. 
(17)]. Numerical values of rra/roM obtained for Ro TM > 
0 deviate distinctly from curve 1 in the highest concen- 
tration range, thus evidencing the reverse transfer. How- 
ever, they lie slightly above the calculated curves, as 
one could expect on account of the simplifications made. 
This proves that some of the excitations transferred from 
traps reach molecules My 

DISCUSSION 

A simple model of concentration self-quenching of 
luminescence due to incoherent energy transfer to the 
statistical pairs treated as perfect traps has been dis- 
cussed by Knoester and Van Himbergen [5]. They car- 
ried out the numerical calculations of the yield "qM and 
emission anisotropy rM by applying the Monte Carlo 
simulation in a three-dimensional space for RT/Ro MM = 
0.2, "qOM = 1/3, and reduced concentrations from ~ = 
0.05 up to ~ = 100. In the present work a very similar 
method of Monte Carlo simulation is adopted. Thus, it 
is of interest to compare our numerical results for rim 
and rM, with Ro TM = 0/~, with the mentioned data. The 
numerical results were obtained by us for the same val- 
uesRT = 1 0 / ~ a n d R o  MM = 50/~ as in Ref. 5. As 
mentioned before, monomers, statistical pairs, and tri- 
mers are considered in present work. Other clusters were 
rejected, opposite to the model presented in Ref. 5, which 
describes all clusters. We have stated that the results of 
both simulations coincide for nearly the whole range of 

densities. Only for the highest densities do the emission 
anisotropy values just exceed those from Ref. 5. Hence, 
clusters composed of four or more monomers practically 
do not affect the numerical results. Curve 1 in Fig. 4A 
has been obtained in the same way as in Ref. 5 from 
formula (14) for Co MM = (3/4v)/(R~M) 3 = 0.00317 mol/ 
dm 3 ( R ~  M = 50 A) and for Co Mw = C~M/x/2. The value 
of the critical concentration Co Mr mentioned above arises 
from the assumption that the transfer rate for the transfer 
process from M* to T is given by 

w~ T = 2w~ M = (2/'rOM)(R~M/ro) 6 (18) 

Concentrations CM and C-r have been determined from 
the expressions 

CM =XMC and CT =XTC/2 = (1 --XM)C/2 (19) 

with 

XM = exp( -- ~) and tx = VTNAC (20) 

where ~ is the average number of monomers in a volume 
VT = (4/3)vR 3, and NA is Avogadro's number. It fol- 
lows from Eq. (18) that in Ref. 5, monomers clustered 
in groups of two or more molecules have been treated 
as statistical pairs with the same transfer rate. As shown 
in Fig. 4A, values of riM/~qOM represented by curve 1 are 
evidently too low. 

For more precise analysis, higher-order clusters Mn 
besides monomers M = M~ and pairs T = M2 have 
been taken into account. The cluster M, is composed of 
n monomers and is characterized by concentration C,, 
and critical concentration Con for the NET process from 
M* to M, with rate a constant w,,. These concentrations 
have been obtained from ttie following equations: 

C, = (C/n)(ix"-a/(n - 1)!)exp(- Ix) (21) 

and 

Co, = C ~ M / v ~ ,  n = 1,2,3... (22) 

where the transfer rate for the NET process was taken 
as w, = nwi~ M. Curve 2 was calculated from Eq. (14) 
under the assumption that monomers, pairs, and also 
trimers were present in the system. In this case, quan- 
tities y and (x are determined from relation (23) forp = 
3: 

P 

-,/= ~2 ',/,, 
n = l  

P 

= (X/~/2)'], exp( -~ )  Z Ix"-~/((n - 1)!V~) 
n = l  

with (23) 
(x = yJ',/ and ~ = C/Co MM 
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Fig. 4. (A) Quantum yield "qM and (B) emission anisotropy rM versus concentration "~ = C/C~M; �9 and o are Monte Carlo simulations performed 
in this work and in Ref. 5, respectively. (A) Curves 1, 2, 3, and 4 were computed from Eq. (14); (B) curves 1, 2, 3, and 4 were computed from 
Eq. (26). Curves I, 2, 3, and 4 : 7  and a from Eqs. (8), (23), (24), and (25), respectively. Curves 1 and 3--traps: all clusters M,, (n > 2) treated 
as statistical pairs. Curves 2 and 4--traps: statistical pairs and trimers. 

This time the numerical data also differ from curve 2. 
However, the hopping model with correlations consid- 
erably improves the agreement between theoretical and 
numerical results. Curves 3 and 4 in Fig. 4A were cal- 
culated from Eq. (14) after replacing y and ~ from Eq. 
(8) with 

Y = YM/'k/~ 4- YT and oL = 'yM/( 'V~y)  (24) 

and 

y = y l / % / 2 + y 2  + y3 and e ~ = % / ( ~ / 2 y ) . ( 2 5 )  

respectively. Curve 4 has been calculated assuming that 
the system contains trimers, in addition to monomers 
and statistical pairs. The simulation results of the emis- 
sion anisotropy rM for the systems discussed above are 
presented in Fig. 4B. The results have been compared 
with theoretical curves calculated from Eq. (26) [29], 

rM/rOM = 1 -- e ( ( y )  (26) 

which does not take into account the statistical correla- 
tions similarly as Eq. (14) for quantum yield. 

The quantities ec and y for curves 1, 2, 3, and 4 
were determined from Eqs. (8), (23), (24), and (25), 
respectively. Curves 3 and 4 correspond to the hopping 
model in which correlations were considered, and curves 
1 and 2 when they were neglected. One can see that the 
simulation results for rM evidently differ from curves 1 

and 2 and lie very well along curve 4 for all densities. 
They also fit curve 3 well except for the last three points. 

From the above discussion it follows that taking 
into account statistical pairs and trimers as perfect traps 
and appropriate characterization of their quenching strength 
by different critical radii, the concentration dependence 
of rim and r M is better described than in the case when 
the model treating all clusters as statistical pairs with the 
same quenching strength is applied. Needless to say, in 
the range of ~ < 10 discrepancies are small (see curves 
3 and 4 in Fig. 4A) and appear only for higher densities. 

Let us note that expressions (14) and (26) have been 
successfully applied to describe the concentration 
quenching in monomer/ground-state dimer systems 
[26,38-41]. They have identical form and content as 
Eqs. (37a) and (37b) obtained later in Ref. 4. 

We have shown [42,43] that the hopping model 
with correlations gives for "riM and rM results surprisingly 
close to those obtained in the framework of the system- 
atic LAF (bring, Andersen, Fayer) theory [22]. 

On the other hand, the very good agreement of the 
Monte Carlo data for "qM with the theoretical results (Fig. 
2) shows that the model with correlations may also be 
successfully applied to the quantitative description of a 
system with imperfect traps. Therefore it is worthwhile 
discussing the influence of the trap radius RT and critical 
radii Ro TM and Ro rr on the yield "riM. Figure 5 presents 
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Fig. 5. Monomer fluorescence quantum yield versus trap concentration 
~T = (X/-~/2)(CT/C~oT), calculated from Eqs. (5), (8'), and (9'). Curves 
b, b' ,  c, and c ' --energy migration (EM) and reversible energy transfer 
(RNET) taken into account. Curves c and c '--Ro TM = 20 ~, Ro rr  = 
25 ,~, b, and b'--Ro TM = 20 ,~; Ro rr  = 0 ,~. Curves a and a ' - -RNET 
neglected, R~ M = Ro rr  = 0 ,~. 

10 "1 
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10 -~ 

for B' = 0 and B' > 0, may be treated as upper and 
lower limits of possible FM/FOM values of the system in 
which reverse energy transfer takes place. The results of 
simulations reported here are the first step in investiga- 
tions of RNET influence on emission anisotropy. It seems 
useful to elaborate the theory of the phenomenon as well 
as to carry out the experiment. The last task may be 
difficult with a view to strong overlap of the absorption 
and fluorescence bands of monomers and traps. 

The fluorescence self-quenching process, known for 
years and widely discussed in the literature [1,7,44-48], 
is not yet satisfactorily elucidated. The most experimen- 
tally documented and theoretically explained is the phe- 
nomenon of fluorescence quenching by ground-state 
dimers [14,27,45,47-50]. However, in systems with weak 
fluorescence quenching, when absorption and emission 
bands do not change over a wide range of concentra- 
tions, the idea of statistical pairs as quenching centers is 
useful. It allows one to describe concentration changes 
in quantum yield with the trap radius RT determined as 
a best-fit parameter [2-4,48]. 

FINAL REMARKS 

plots of quantum yield 1]M versus trap density "/~r for two 
values of the trap radius R T. The curves are calculated 
from Eqs. (5), (8'), and (9') for the values of parameters 
listed in Table I and values of R TM and Ro rr given in the 
legend to Fig. 5. Let us note that for a fixed concentra- 
tion 7T, a greater monomer concentration "YM corre- 
sponds to the system with lower RT, and thus stronger 
energy migration and trapping processes are present (see 
curves a and a'). Altogether, the influence of the RNET 
process on the quantum yield "qM is stronger in this case 
(see curves a', b' and a, b). Thus, the effect of RNET on 
the monomer fluorescence quantum yield is considerable 
in a high concentration range, especially in systems with 
smaller values of R T. In systems with greater values of the 
trap radius R:r, it may be necessary to include the NET 
process among trap molecules. This may be evident for 
greater values of critical radii R TM and Ro rr, especially in 
the high concentration region (cf. curves b, c and b', c' in 
Fig. 5). Needless to say, the systems consisting of traps 
of greater radii are not interesting. This is because in such 
a case it would be very difficult to explain the fluorescence 
quenching process correctly. 

The results of emission anisotropy simulations 
showed a significant influence of reverse transfer on the 
courses of FM/FOM , especially for greater values of R TM 

(see Fig. 3). Curves rM/FOM , calculated from Eq. (17) 

Monte Carlo simulations of steady-state fluores- 
cence quantum yield and emission anisotropy for sys- 
tems containing monomers and statistical clusters (pairs 
and trimers) playing the role of imperfect traps for ex- 
citation energy were carried out. Numerical results were 
obtained for three-dimensional systems, assuming con- 
stant F6rster distances Ro MM and R MT but different dis, 
tances R TM and R ~ .  It was shown that the influence of 
reverse energy transfer may be significant in the range 
of high dye concentrations. A very good agreement be- 
tween simulation results for quantum yield and the hop- 
ping model with correlations was found. 

In the case of emission anisotropy, the agreement 
of the results of simulation with the prediction of the 
hopping model turned out to be only approximate. The 
calculated values of rM/rOM are low in comparison with 
the numerical data. This result is understandable, as 
expression (17) does not take into account the possibility 
of back-transfer of the excitation energy from traps to 
monomers Mi--the prime absorbers of the exciting light. 
It is useful to investigate both experimentally and theo- 
retically the emission anisotropy in donor-acceptor sys- 
tems in which direct and reverse energy transfer takes 
place. We hope to solve the problem of emission ani- 
sotropy in the framework of a systematic LAF theory of 
incoherent energy transport. 
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